Computación cuántica: un salto tan grande como el que hubo entre el ábaco y la informática actual | Crónicas del intangible | Tecnología

Computación cuántica: un salto tan grande como el que hubo entre el ábaco y la informática actual | Crónicas del intangible | Tecnología


El procesador cuántico de IBM.

Si el siglo XIX fue la era de la máquina y el siglo XX la de la información, el siglo XXI será la era cuántica. No es una hipérbole. William Daniel Phillips, premio Nobel de Física en 1997, opina que la computación cuántica supone un salto tecnológico sin comparación a los que hemos vivido hasta ahora, más grande incluso que el existente entre el ábaco y la informática actual.

La mecánica cuántica surge a principios del siglo pasado como el campo de la física que describe el comportamiento de la naturaleza a niveles subatómicos (por ejemplo, de partículas como fotones o electrones), para el que la mecánica clásica no encontraba una solución satisfactoria. Posteriormente, a principios de los ochenta, el físico estadounidense Richard Feynman planteó la construcción de un ordenador cuyos estados internos fueran variables cuánticas. Este premio Nobel, junto con con el también estadounidense Paul Benioff y el matemático ruso Yuri Manin sentaron las bases de esta nueva computación, empezando así la segunda revolución cuántica. Esta atrajo el interés de las agencias de seguridad de varios gobiernos, cuando el físico estadounidense Charles Bennett y el canadiense Gilles Brassard propusieron el primer protocolo de criptografía cuántica y el matemático estadounidense Peter Shor un algoritmo que reduce drásticamente el tiempo de ejecución de la factorización de números, una de las bases de la criptografía actual.

Igual que la informática clásica se basa en el concepto de bit (que puede tomar el valor 0 o 1), en la informática cuántica el cúbit (del inglés qubit, quantum bit), es la unidad mínima de información. A diferencia del bit, que sólo puede estar en uno de esos dos estados, el cúbit puede encontrarse simultáneamente en los estados 0 y 1. Es como si pasáramos de un interruptor de la luz que la apaga o la enciende, a uno que nos deja tener muchos estados intermedios. Así con 10 cúbits tendríamos 1.024 estados simultáneos y, cada vez que añadimos un cúbit, duplicamos la potencia de cálculo.

Hay que tener en cuenta que generar y manejar los cúbits es un enorme desafío científico y de ingeniería, ya que hay que evitar que los cúbits interactúen con el entorno hasta que sean medidos, para lo que, en algunos casos, se enfrían los circuitos a temperaturas más bajas que la del espacio profundo (cercanas al cero absoluto, -273 grados centígrados). A pesar de ello, en la actualidad los ordenadores cuánticos presentan todavía muchos errores, ya que se pierde la coherencia de los valores de los cúbits.

Existen dos formas de trabajar con ordenadores cuánticos. Una es la basada en el llamado temple cuántico (quantum annealing) ―empleada por la compañía D-Wave― en los que el problema a resolver se hace corresponder con un modelo cuya solución es el estado de energía más bajo del sistema y que son adecuadas para ejecutar problemas de optimización. La otra es la de ordenadores que soportan la computación cuántica basada en puertas ―empleada por IBM, Google o Rigetti―, en la que un problema se descompone en una secuencia de operaciones básicas primitivas, que se realizan mediante puertas cuánticas. Hay que tener en cuenta que los ordenadores cuánticos no sustituyen a los actuales, sino que conviven en arquitecturas híbridas en las que un ordenador clásico envía al ordenador cuántico las instrucciones oportunas, recogiendo y procesando los resultados que éste le devuelve.

Los ordenadores cuánticos no sólo permiten simular mucho mejor la naturaleza, sino también ejecutar algoritmos que para los ordenadores “clásicos” son impracticables, ya que tardarían demasiado tiempo ―en algunos casos, incluso el mayor supercomputador del mundo, varios millones de años― o necesitarían una memoria casi infinita. De hecho, en 2019 Google anunció la “supremacía cuántica” con un experimento diseñado por el español Sergio Boixo: un ordenador cuántico logró hacer en unos minutos algo que a un superordenador convencional le llevaría miles de años.

Existen cientos de aplicaciones interesantes para este nuevo tipo de informática en campos como la economía y servicios financieros, química, medicina y salud, logística y cadena de suministro, energía y agricultura. Y, por supuesto, la informática cuántica impacta de modo fundamental en la ciberseguridad y en la Inteligencia Artificial. Ello ha impulsado a muchos gobiernos (EE UU, la Unión Europea, Países Bajos, Francia o Alemania) a incluir las tecnologías cuánticas en sus agendas y ecosistemas de investigación.

Con el fin de contribuir a que la informática cuántica sea una realidad, un conjunto de investigadores y profesionales de la informática [entre los que se incluye el firmante de este artículo] propuso en el Manifiesto sobre la Ingeniería y la Programación del Software Cuántico, la implicación de todos: las empresas y los profesionales, identificando los proyectos que puedan beneficiarse de esta tecnología; los científicos, intentando resolver las cuestiones pendientes; los gobiernos apoyando la investigación y transferencia, y los académicos, considerando la informática cuántica en los currículos y planes de estudio. La computación cuántica ofrece la oportunidad de experimentar lo mismo que los pioneros de la informática en los años sesenta del siglo pasado y ser protagonistas de esta nueva era.

Mario Piattini Velthuis. Catedrático de Lenguajes y Sistemas Informáticos de la Universidad de Castilla-La Mancha

Crónicas del Intangible es un espacio de divulgación sobre las ciencias de la computación, coordinado por la sociedad académica SISTEDES (Sociedad de Ingeniería de Software y de Tecnologías de Desarrollo de Software). El intangible es la parte no material de los sistemas informáticos (es decir, el software), y aquí se relatan su historia y su devenir. Los autores son profesores de las universidades españolas, coordinados por Ricardo Peña Marí (catedrático de la Universidad Complutense de Madrid) y Macario Polo Usaola (profesor titular de la Universidad de Castilla-La Mancha).

Para consultar las crónicas de otros años, haga clic aquí.

Puedes seguir a EL PAÍS TECNOLOGÍA en Facebook y Twitter.

Lo más vendido de tecnología informática

RebajasBestseller No. 1
Hp Elite 8300 SFF - Ordenador de sobremesa (Intel Core i5-3470, 3.2 GHz, 8GB de RAM, Disco SSD de 240GB + 500GB HDD, Lector, Windows 10 Pro ES 64) (Reacondicionado)
  • Procesador Intel Core i5-3470 caché de 6M, hasta 3,60 GHz
  • Memoria RAM de 8 GB, de tipo DDR3
  • Almacenamiento de SSD 240GB + 500GB HDD
  • Sistema operativo Windows 10 Professional
RebajasBestseller No. 2
Lenovo V14 - Ordenador portátil 14" HD (Athlon 3020E, 4GB RAM, 128GB SSD, UMA Graphics, Windows 10 Pro), Color gris - Teclado QWERTY español
  • Pantalla de 14" HD, 1280x720 píxeles, TN, 220nits, antirreflejo
  • Procesador Athlon 3020E (2C, 1.2 GHz)
  • Memoria RAM de 4GB DDR4-2400 SO-DIMM
  • Almacenamiento de 128GB SSD M.2 2242 NVMe
  • Sistema Operativo Windows 10 Pro
RebajasBestseller No. 3
Lenovo IdeaPad 3 - Ordenador Portátil 15.6" FullHD (Intel Core i5-1135G7, 16GB RAM, 512GB SSD, Intel Iris Xe Graphics, Sin Sistema Operativo) Gris - Teclado QWERTY Español
  • Pantalla de 15.6" FullHD 1920x1080 píxeles, TN, 250nits
  • Procesador Intel Core i5-1135G7 (4C/8T, 4.2 GHz, 8 MB)
  • Memoria RAM de 16GB (8GB Soldered DDR4-3200 + 8GB SO-DIMM DDR4-3200)
  • Almacenamiento de 512GB SSD M.2 2242 PCIe 3.0x4 NVMe
  • Tarjeta gráfica integrada Intel Iris Xe Graphics
Bestseller No. 4
HP 15s-fq2037ns - Ordenador portátil de 15.6" FullHD (Intel Core i3-1115G4, 8GB de RAM, 256GB SSD, Intel UHD Graphics, Windows 10 ) Plata - teclado QWERTY Español
  • Pantalla de 15.6" FullHD
  • Procesador Intel Core i3-1115G4
  • 8GB de memoria RAM
  • Almacenamiento de 256GB SSD
  • Tarjeta gráfica Integrada Intel UHD Graphics
Bestseller No. 5
Hp Elite 8300 - Ordenador de sobremesa (Intel Core i5-3470, 8GB de RAM, Disco HDD de 500GB, Lector DVD, Windows 10 PRO ES 64) - Negro (Reacondicionado)
  • Ordenador de sobremesa HP 8300 SFF (Intel Core i5-3470 @ 3,2GHz (Quad Core), Memoria 8GB, Disco Duro de 500HDD DVD, WINDOWS 10 PRO ES 64)
  • Tarjeta grafica Intel Graphics HD, Sonido High DEF Audio, Tarjeta de RED - LAN: Gigabit Ethernet, Expansion: (1) PCI; (1) PCIe x1; (1) PCIe x4; (1) PCIe x16, Puertos: (4) USB 3.0 (6) USB 2.0 (1) RJ45 (1) PUERTO SERIE (1) Displayport (1) VGA
  • Contenido de la caja : El articulo + Adaptador de corriente/cable de corriente; factura
  • Dimensiones: 10.0 x 33.8 x 37.9 cm (4.0 x 13.3 x 14.9 in), Peso 7.6 kg (16.7 lb)

Fuente original